RATS 11.1
RATS 11.1

PANEL.RPF estimates a panel data model using several different methods. It demonstrates the PREGRESS instruction plus several different uses of the PANEL instruction and how the equivalent estimators to fixed and random effects can be done using least squares with dummy variables and with panel data transformations.

 

This uses the grunfeld.dat data file, with \(N=10\), \(T=20\).

 

cal(panelobs=20) 1935

all 10//1954:1

open data grunfeld.dat

data(format=prn,org=cols)

 

Do fixed and random effects. The intercept in the fixed effects estimator gets zeroed out as a time-invariant variable, but we include it to maintain the same form as the other regressions.

 

preg(method=fixed) invest

# constant firmvalue cstock

preg(method=random) invest

# constant firmvalue cstock

 

This does a first-difference regression:

 

preg(method=fd) invest

# firmvalue cstock

 

And this does a SUR estimation. (This data set is barely adequate for that, with T relatively small relative to N).

 

preg(method=sur) invest

# constant firmvalue cstock

 

This does fixed effects as least squares with dummy variables (omitting the CONSTANT, since it is redundant with a full set of dummies).

 

panel(dummies=idummies)

linreg invest

# firmvalue cstock idummies

 

 

Random effects done using transformed data. We first need estimates of the component variances. The simplest (though not most accurate) can be computed using PSTATS with the residuals from a linear regression. PSTATS does a Wallace-Hussain variance calculation treating the input information as data (rather than residuals), so it will give a somewhat different values for the component variances from the one you get from PREGRESS (even with VCOMP=WH) since the latter uses information about the regression being run.

 

One other difference between the filtered regression and PREGRESS with METHOD=RANDOM is that the latter (in effect) uses the computed random variance component in calculating the covariance matrix, while the filtered least squares estimator uses the standard OLS estimator on the filtered data, thus recomputing the residual variance based upon the results.

 

linreg invest

# constant firmvalue cstock

pstats(effects=indiv) %resids

 

set ones = 1.0

panel(gls=standard,effects=indiv,$

   vrandom=%vrandom,vindiv=%vindiv) invest / ifix

panel(gls=standard,effects=indiv,$

   vrandom=%vrandom,vindiv=%vindiv) firmvalue / ffix

panel(gls=standard,effects=indiv,$

   vrandom=%vrandom,vindiv=%vindiv) cstock / cfix

panel(gls=standard,effects=indiv,$

   vrandom=%vrandom,vindiv=%vindiv) ones / constfix

linreg(title="Random Effects using Transformed Data") ifix

# constfix ffix cfix

 

preg(method=random,vcomp=wh) invest

# constant firmvalue cstock

Full Program

 

cal(panelobs=20) 1935
all 10//1954:1
open data grunfeld.dat
data(format=prn,org=cols)
*
* Do fixed and random effects. The intercept in the fixed effects
* estimator gets zeroed out as a time-invariant variable, but we include
* it to maintain the same form as the other regressions.
*
preg(method=fixed) invest
# constant firmvalue cstock
preg(method=random) invest
# constant firmvalue cstock
*
* First difference regression
*
preg(method=fd) invest
# firmvalue cstock
*
* SUR
*
preg(method=sur) invest
# constant firmvalue cstock
*
* Do fixed effects as least squares with dummy variables
*
panel(dummies=idummies)
linreg invest
# firmvalue cstock idummies
*
* Random effects done using transformed data. We first need estimates of the
* component variances. The simplest (though not most accurate) can be computed
* using PSTATS with the residuals from a linear regression. PSTATS does a
* Wallace-Hussain variance calculation treating the input information as data
* (rather than residuals), so it will give a somewhat different values for the
* component variances from the one you get from PREGRESS (even with VCOMP=WH)
* since the latter uses information about the regression being run.
*
* One other difference between the filtered regression and PREGRESS with
* METHOD=RANDOM is that the latter (in effect) uses the computed random variance
* component in calculating the covariance matrix, while the filtered least squares
* estimator uses the standard OLS estimator on the filtered data, thus recomputing
* the residual variance based upon the results.

linreg invest
# constant firmvalue cstock
pstats(effects=indiv) %resids
*
set ones = 1.0
panel(gls=standard,effects=indiv,$
   vrandom=%vrandom,vindiv=%vindiv) invest / ifix
panel(gls=standard,effects=indiv,$
   vrandom=%vrandom,vindiv=%vindiv) firmvalue / ffix
panel(gls=standard,effects=indiv,$
   vrandom=%vrandom,vindiv=%vindiv) cstock / cfix
panel(gls=standard,effects=indiv,$
   vrandom=%vrandom,vindiv=%vindiv) ones / constfix
linreg(title="Random Effects using Transformed Data") ifix
# constfix ffix cfix
*
preg(method=random,vcomp=wh) invest
# constant firmvalue cstock
 

Output

 

Panel Regression - Estimation by Fixed Effects

Dependent Variable INVEST

Panel(20) of Annual Data From      1//1935:01 To     10//1954:01

Usable Observations                       200

Degrees of Freedom                        188

Centered R^2                        0.9440725

R-Bar^2                             0.9408002

Uncentered R^2                      0.9615675

Mean of Dependent Variable       145.95825000

Std Error of Dependent Variable  216.87529623

Standard Error of Estimate        52.76796595

Sum of Squared Residuals         523478.14739

Regression F(11,188)                 288.4996

Significance Level of F             0.0000000

Log Likelihood                     -1070.7810

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Constant                     0.0000000000 0.0000000000      0.00000  0.00000000

2.  FIRMVALUE                    0.1101238041 0.0118566942      9.28790  0.00000000

3.  CSTOCK                       0.3100653413 0.0173545028     17.86656  0.00000000

 

 

Panel Regression - Estimation by Random Effects-Wansbeek-Kapteyn

Dependent Variable INVEST

Panel(20) of Annual Data From      1//1935:01 To     10//1954:01

Usable Observations                       200

Degrees of Freedom                        197

Mean of Dependent Variable       145.95825000

Std Error of Dependent Variable  216.87529623

Standard Error of Estimate        51.57596760

Sum of Squared Residuals         524035.84543

Log Likelihood                     -1095.2767

S.D. (eta_it)                         52.7680

S.D. (mu_i)                           83.5235

Hausman Test(2)                      2.165099

Significance Level                  0.3387309

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Constant                     -57.82187368  28.68561577     -2.01571  0.04383034

2.  FIRMVALUE                      0.10977763   0.01047110     10.48387  0.00000000

3.  CSTOCK                         0.30808136   0.01717229     17.94062  0.00000000

 

 

Panel Regression - Estimation by First Difference

Dependent Variable INVEST

Panel(20) of Annual Data From      1//1935:01 To     10//1954:01

Usable Observations                       190

Degrees of Freedom                        188

Skipped/Missing (from 200)                 10

Centered R^2                        0.4080548

R-Bar^2                             0.4049061

Uncentered R^2                      0.4288436

Mean of Dependent Variable       10.580789474

Std Error of Dependent Variable  55.606632649

Standard Error of Estimate       42.896251341

Sum of Squared Residuals         345936.61527

Log Likelihood                      -982.7621

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  FIRMVALUE                    0.0890628288 0.0082341070     10.81633  0.00000000

2.  CSTOCK                       0.2786940167 0.0471564164      5.90999  0.00000002

 

 

Panel Regression - Estimation by Cross Individual SUR

Dependent Variable INVEST

Panel(20) of Annual Data From      1//1935:01 To     10//1954:01

Usable Observations                       200

Degrees of Freedom                        197

Log Likelihood                      -799.3006

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Constant                     -1.896858713  0.184802520    -10.26425  0.00000000

2.  FIRMVALUE                     0.040795066  0.001827778     22.31949  0.00000000

3.  CSTOCK                        0.084165394  0.002110682     39.87591  0.00000000

 

 

Linear Regression - Estimation by Least Squares

Dependent Variable INVEST

Panel(20) of Annual Data From      1//1935:01 To     10//1954:01

Usable Observations                       200

Degrees of Freedom                        188

Centered R^2                        0.9440725

R-Bar^2                             0.9408002

Uncentered R^2                      0.9615675

Mean of Dependent Variable       145.95825000

Std Error of Dependent Variable  216.87529623

Standard Error of Estimate        52.76796595

Sum of Squared Residuals         523478.14739

Regression F(11,188)                 288.4996

Significance Level of F             0.0000000

Log Likelihood                     -1070.7810

Durbin-Watson Statistic                1.0789

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  FIRMVALUE                       0.1101238    0.0118567      9.28790  0.00000000

2.  CSTOCK                          0.3100653    0.0173545     17.86656  0.00000000

3.  IDUMMIES(1)                   -70.2967175   49.7079588     -1.41419  0.15895875

4.  IDUMMIES(2)                   101.9058137   24.9383232      4.08631  0.00006485

5.  IDUMMIES(3)                  -235.5718410   24.4316165     -9.64209  0.00000000

6.  IDUMMIES(4)                   -27.8092946   14.0777538     -1.97541  0.04968535

7.  IDUMMIES(5)                  -114.6168128   14.1654333     -8.09130  0.00000000

8.  IDUMMIES(6)                   -23.1612951   12.6687393     -1.82822  0.06910077

9.  IDUMMIES(7)                   -66.5534735   12.8429734     -5.18209  0.00000056

10. IDUMMIES(8)                   -57.5456573   13.9931464     -4.11242  0.00005848

11. IDUMMIES(9)                   -87.2222724   12.8918932     -6.76567  0.00000000

12. IDUMMIES(10)                   -6.5678435   11.8268910     -0.55533  0.57932822

 

 

Linear Regression - Estimation by Least Squares

Dependent Variable INVEST

Panel(20) of Annual Data From      1//1935:01 To     10//1954:01

Usable Observations                       200

Degrees of Freedom                        197

Centered R^2                        0.8124080

R-Bar^2                             0.8105035

Uncentered R^2                      0.8710896

Mean of Dependent Variable       145.95825000

Std Error of Dependent Variable  216.87529623

Standard Error of Estimate        94.40840333

Sum of Squared Residuals         1755850.4841

Regression F(2,197)                  426.5757

Significance Level of F             0.0000000

Log Likelihood                     -1191.8024

Durbin-Watson Statistic                0.3582

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Constant                     -42.71436944   9.51167603     -4.49073  0.00001207

2.  FIRMVALUE                      0.11556216   0.00583571     19.80259  0.00000000

3.  CSTOCK                         0.23067849   0.02547580      9.05481  0.00000000

 

 

Linear Regression - Estimation by Random Effects using Transformed Data

Dependent Variable IFIX

Panel(20) of Annual Data From      1//1935:01 To     10//1954:01

Usable Observations                       200

Degrees of Freedom                        197

Centered R^2                        0.7701087

R-Bar^2                             0.7677747

Uncentered R^2                      0.7793720

Mean of Dependent Variable        22.50972149

Std Error of Dependent Variable  110.12986275

Standard Error of Estimate        53.07131291

Sum of Squared Residuals         554863.15798

Regression F(2,197)                  329.9633

Significance Level of F             0.0000000

Log Likelihood                     -1076.6036

Durbin-Watson Statistic                0.9831

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  CONSTFIX                     -57.65456985  26.45569335     -2.17929  0.03049659

2.  FFIX                           0.10973383   0.01029150     10.66257  0.00000000

3.  CFIX                           0.30764686   0.01723808     17.84694  0.00000000

 

 

Panel Regression - Estimation by Random Effects-Wallace-Hussain

Dependent Variable INVEST

Panel(20) of Annual Data From      1//1935:01 To     10//1954:01

Usable Observations                       200

Degrees of Freedom                        197

Mean of Dependent Variable       145.95825000

Std Error of Dependent Variable  216.87529623

Standard Error of Estimate        51.57326630

Sum of Squared Residuals         523980.95397

Log Likelihood                     -1095.4262

S.D. (eta_it)                         53.7452

S.D. (mu_i)                           87.3580

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Constant                     -57.86252975  29.90491885     -1.93488  0.05300461

2.  FIRMVALUE                      0.10978918   0.01072476     10.23698  0.00000000

3.  CSTOCK                         0.30818339   0.01749842     17.61207  0.00000000

 

 


Copyright © 2026 Thomas A. Doan