MAAUTOLAGS Procedure |
@MAAUTOLAGS quickly scans a set of moving average models looking for the one which minimizes one of four information criteria. This can be used in ARMA model identification, and also for diagnostics (best lag should be zero if the series is serially uncorrelated). @ARAutoLags does a similar "quick" calculation for choosing a pure MA process. @BJAUTOFIT and @GMAUTOFIT do more time-consuming calculations (they do exact maximum likelihood fits) for choosing full ARMA models. (@GMAUTOFIT is for seasonal ARMA models).
@MAAutoLags( options )series start end
Parameters
|
series |
series to analyze |
|
start, end |
range of series to use (by default, the maximum possible) |
Options
MAXLAGS=maximum number of lags to consider [25]
CRIT=[AIC]/BIC/CAIC/HQ
Criterion to use:
AIC is (uncorrected) Akaike information criterion.
BIC is the Bayesian or Schwarz criterion.
HQ is Hannan-Quinn.
CAIC is the AIC-corrected for degrees of freedom
TABLE/[NOTABLE]
Show full table of results (not just best)
Variables Defined
|
%%AUTOQ |
number of parameters selected (INTEGER) |
Example
open data dowj.dat
data(format=free,org=columns) 1 78 dowj
*
set ddow = dowj-dowj{1}
*
@maautolags(maxlag=17,crit=bic,table) ddow
boxjenk(ma=1,maxl,demean) ddow
boxjenk(ma=2,maxl,demean) ddow
boxjenk(ma=3,maxl,demean) ddow
Sample Output
In the output, small is good. The chosen (starred) model is the MA(1).
Lags IC
0 -1.659
1 -1.798*
2 -1.755
3 -1.699
4 -1.669
5 -1.613
6 -1.569
7 -1.515
8 -1.482
9 -1.427
10 -1.371
11 -1.336
12 -1.297
13 -1.291
14 -1.244
15 -1.231
16 -1.186
17 -1.172
Copyright © 2026 Thomas A. Doan