RATS 11.1
RATS 11.1

Procedures /

BJDIFF Procedure

Home Page

← Previous Next →

@BJDIFF generates a table of Schwarz (BIC) criteria for various combinations of differencings and mean extractions, as a preliminary step in Box-Jenkins modeling. It can be used (if done carefully) to do an automated choice for the DIFFS, SDIFFS and CONSTANT options on a BOXJENK instruction.

@BJDIFF( options )   series  start  end

Parameters

series

series to analyze

start, end

range of series to use. By default, the defined range of series. Do not adjust these for the number of differencings.

Options

DIFF=maximum regular differencings[0]

SDIFFS=maximum seasonal differencings[0]

SPAN=seasonal span [CALENDAR seasonal]

 

TRANS=[NONE]/LOG/ROOT

Transformation to apply to data

 

WIDTH=window width for spectral smoothing [depends upon amount of data]

Description

@BJDIFF examines all combinations of 0 to DIFF regular differences, 0 to SDIFFS seasonal differences and non-zero mean or not using a common range determined by the maximum number of differencings allowed. The variance of the "stationary" part is estimated using non-parametric spectral methods and used to determine an approximate log likelihood for a particular set of differencings. This is converted into its Schwarz criterion (or BIC) where the only parameter that might be estimated is the constant.

Variables Defined

%%AUTOD

recommended number of regular differencings (INTEGER)

%%AUTODS

recommended number of seasonal differencings (INTEGER)

%%AUTOCONST

recommended choice for CONST option (INTEGER)

Example

This is the example program AUTOBOX.RPF.
 

cal(m) 1992:1

open data x12test.xls

data(format=xls,org=columns) 1992:1 2008:7 u11bvs

set ldata = log(u11bvs)

*

@bjdiff(diffs=2,sdiffs=1) ldata

*

@gmautofit(diffs=%%autod,sdiffs=%%autods,const=%%autoconst,report) ldata

*

boxjenk(diffs=%%autod,sdiffs=%%autods,const=%%autoconst,$

  ar=%%autop,sar=%%autops,ma=%%autoq,sma=%%autoqs,$

  outliers=standard,trace) ldata

Sample Output

This is the output from the example. The choice of the procedure is 1 regular, 1 seasonal, no constant, which is a common choice for seasonal data. The only close competitor is the same model with the constant.
 

BJDiff Table, Series LDATA

Reg Diff Seas Diff Intercept Crit

       0         0 No         0.844633

       0         0 Yes       -5.076124

       0         1 No        -6.286452

       0         1 Yes       -6.374283

       1         0 No        -5.969619

       1         0 Yes       -5.952947

       1         1 No        -6.527156*

       1         1 Yes       -6.498573

       2         0 No        -5.469264

       2         0 Yes       -5.442213

       2         1 No        -6.103301

       2         1 Yes       -6.074705


 


Copyright © 2026 Thomas A. Doan