Sharpe's Returns Based Style Analysis
Posted: Tue Dec 07, 2021 4:37 am
I tried running Sharpe's Returns Based Style Analysis framework using nonlin function in RATS. I used this because I need to impose two restrictions on a multiple regression. I am regressing monthly returns of a mutual fund (dependent variable) with four passive portfolio indices (independent variables) .
All factor loadings need to be between 0 and 1 and sum of all weights/factor loadings should be equal to 1. These are the restrictions for Sharpe's Quadratic Programing technique.
nonlin b1_stbi b2_mbi b3_ldi b4_ddi b1_stbi+b2_mbi+b3_ldi+b4_ddi==1.0 b1_stbi>=0 b2_mbi>=0 b3_ldi>=0 b4_ddi>=0
frml eq3 = b1_stbi*stbi+b2_mbi*mbi+b3_ldi*ldi+b4_ddi*ddi
com b1_stbi=b2_mbi=b3_ldi=b4_ddi=0.0
nlls(frml = eq3) ab
I do not get convergence at all. How can I overcome this problem? I increased the number of iterations by using iters=10000. But it did not help.
Nonlinear Least Squares - Estimation by BFGS Restricted
NO CONVERGENCE IN 100 ITERATIONS
LAST CRITERION WAS 1.#QNAN00
Dependent Variable AB
Monthly Data From 2010:04 To 2020:03
Usable Observations 120
Degrees of Freedom 116
Centered R^2 1.#QNAN00
R-Bar^2 1.#QNAN00
Uncentered R^2 1.#QNAN00
Mean of Dependent Variable 0.0064705150
Std Error of Dependent Variable 0.0126335556
Standard Error of Estimate 1.#QNAN00000
Sum of Squared Residuals 1.#QNAN0
Log Likelihood 1.#QNBe+000
Durbin-Watson Statistic 1.#QNBe+000
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. B1_STBI 1.#QNAN0 0.000000 0.00000 0.00000000
2. B2_MBI 1.#QNAN0 0.000000 0.00000 0.00000000
3. B3_LDI 1.#QNAN0 0.000000 0.00000 0.00000000
4. B4_DDI 1.#QNAN0 0.000000 0.00000 0.00000000
All factor loadings need to be between 0 and 1 and sum of all weights/factor loadings should be equal to 1. These are the restrictions for Sharpe's Quadratic Programing technique.
nonlin b1_stbi b2_mbi b3_ldi b4_ddi b1_stbi+b2_mbi+b3_ldi+b4_ddi==1.0 b1_stbi>=0 b2_mbi>=0 b3_ldi>=0 b4_ddi>=0
frml eq3 = b1_stbi*stbi+b2_mbi*mbi+b3_ldi*ldi+b4_ddi*ddi
com b1_stbi=b2_mbi=b3_ldi=b4_ddi=0.0
nlls(frml = eq3) ab
I do not get convergence at all. How can I overcome this problem? I increased the number of iterations by using iters=10000. But it did not help.
Nonlinear Least Squares - Estimation by BFGS Restricted
NO CONVERGENCE IN 100 ITERATIONS
LAST CRITERION WAS 1.#QNAN00
Dependent Variable AB
Monthly Data From 2010:04 To 2020:03
Usable Observations 120
Degrees of Freedom 116
Centered R^2 1.#QNAN00
R-Bar^2 1.#QNAN00
Uncentered R^2 1.#QNAN00
Mean of Dependent Variable 0.0064705150
Std Error of Dependent Variable 0.0126335556
Standard Error of Estimate 1.#QNAN00000
Sum of Squared Residuals 1.#QNAN0
Log Likelihood 1.#QNBe+000
Durbin-Watson Statistic 1.#QNBe+000
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. B1_STBI 1.#QNAN0 0.000000 0.00000 0.00000000
2. B2_MBI 1.#QNAN0 0.000000 0.00000 0.00000000
3. B3_LDI 1.#QNAN0 0.000000 0.00000 0.00000000
4. B4_DDI 1.#QNAN0 0.000000 0.00000 0.00000000