Estimation of VAR(1)-GARCH(1,1) model
Posted: Sun May 03, 2015 8:25 am
Hi Tom,
I estimate VAR(1)-GARCH(1,1) using FRML command and by RATS command.
The coding for FRML is given below
the results are given below
using the same data I estimate the model by following command
the results are given below
I have the following questions
1 Why the log likelihood values are different for same models?
2. Why coefficients are different and their significance? The sign of coefficient are different and their values. some coefficient are significant in one estimation method and not in other.
I estimate VAR(1)-GARCH(1,1) using FRML command and by RATS command.
The coding for FRML is given below
Code: Select all
open data d-spcscointc.txt
data(format=free,org=columns,top=2) 1 2275 sp500 cisco intel
set r1 = sp500
set r2 = cisco
set h1 = 0.0
set h2 = 0.0
nonlin a10 a11 a12 a20 a21 a22 c10 c20 c11 c12 c21 c22 d11 d12 d21 d22 rho
frml a1t = r1(t)-(a10+a11*r1(t-1)+a12*r2(t-1))
frml a2t = r2(t)-(a20+a21*r1(t-1)+a22*r2(t-1))
frml gvar1 = c10+c11*a1t(t-1)**2+c12*a2t(t-1)**2+d11*h1(t-1)+d12*h2(t-1)
frml gvar2 = c20+c21*a1t(t-1)**2+c22*a2t(t-1)**2+d21*h1(t-1)+d22*h2(t-1)
frml gdet = -0.5*(log(h1(t)=gvar1(t))+log(h2(t)=gvar2(t)) $
+log(1.0-rho**2))
frml gln = gdet(t)-0.5/(1.0-rho**2)*((a1t(t)**2/h1(t)) $
+(a2t(t)**2/h2(t))-2*rho*a1t(t)*a2t(t)/sqrt(h1(t)*h2(t)))
smpl 3 2275
compute a10 = .22, a20 = 0.07, a11 = 0.01, rho = 0.5, a12 = .4, a21 = .5
compute c10 = .27, c11 = 0.2, d11 = .6, c12 = .2, d12 = .2
compute c20 = .17, c22 = 0.13, d22 = 0.8, c21 = .1, d21 = .3
maximize(method=bhhh,iterations=500,rob) gln
Code: Select all
MAXIMIZE - Estimation by BHHH
Convergence in 61 Iterations. Final criterion was 0.0000064 <= 0.0000100
With Heteroscedasticity/Misspecification Adjusted Standard Errors
Usable Observations 2273
Function Value -3672.6624
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. A10 0.075049586 0.015269671 4.91494 0.00000089
2. A11 -0.006323123 0.024237368 -0.26088 0.79418256
3. A12 0.015632354 0.006210138 2.51723 0.01182811
4. A20 0.358889885 0.054470997 6.58864 0.00000000
5. A21 -0.074112862 0.066593131 -1.11292 0.26574257
6. A22 0.053170195 0.025089897 2.11919 0.03407463
7. C10 0.025733328 0.003531222 7.28737 0.00000000
8. C20 0.526537916 0.082069890 6.41573 0.00000000
9. C11 0.073885727 0.007072894 10.44632 0.00000000
10. C12 0.001686320 0.000505247 3.33762 0.00084501
11. C21 0.010094643 0.069358449 0.14554 0.88428210
12. C22 0.119394861 0.013753363 8.68114 0.00000000
13. D11 0.903275438 0.009356433 96.54057 0.00000000
14. D12 -0.002602313 0.000572443 -4.54598 0.00000547
15. D21 -0.125506227 0.089361091 -1.40448 0.16017476
16. D22 0.833019216 0.016392141 50.81821 0.00000000
17. RHO 0.520893393 0.014860092 35.05317 0.00000000
Code: Select all
garch(p=1,q=1,mv=cc,var=varma, reg, met=bhhh,rob) / r1 r2
# constant r1{1} r2{1}
Code: Select all
MV-CC GARCH with VARMA Variances - Estimation by BHHH
Convergence in 34 Iterations. Final criterion was 0.0000062 <= 0.0000100
With Heteroscedasticity/Misspecification Adjusted Standard Errors
Usable Observations 2273
Log Likelihood -7835.7082
Variable Coeff Std Error T-Stat Signif
************************************************************************************
Mean Model(R1)
1. Constant 0.067452839 0.015238714 4.42641 0.00000958
2. R1{1} 0.003889732 0.023814160 0.16334 0.87025315
3. R2{1} 0.014304492 0.005903544 2.42303 0.01539146
Mean Model(R2)
4. Constant 0.339449246 0.055521257 6.11386 0.00000000
5. R1{1} -0.072030714 0.066372692 -1.08525 0.27781261
6. R2{1} 0.050964805 0.025194395 2.02286 0.04308729
7. C(1) 0.011124304 0.002561042 4.34366 0.00001401
8. C(2) 0.256512413 0.059561465 4.30668 0.00001657
9. A(1,1) 0.047385432 0.006544956 7.23999 0.00000000
10. A(1,2) -0.000117081 0.002152554 -0.05439 0.95662310
11. A(2,1) -0.081179705 0.027107715 -2.99471 0.00274707
12. A(2,2) 0.093852416 0.013124545 7.15091 0.00000000
13. B(1,1) 0.946030301 0.008121174 116.48935 0.00000000
14. B(1,2) -0.005689723 0.003706640 -1.53501 0.12478183
15. B(2,1) 0.051610857 0.072453765 0.71233 0.47626159
16. B(2,2) 0.883206748 0.015656303 56.41222 0.00000000
17. R(2,1) 0.521058810 0.014914887 34.93548 0.00000000
1 Why the log likelihood values are different for same models?
2. Why coefficients are different and their significance? The sign of coefficient are different and their values. some coefficient are significant in one estimation method and not in other.