RATS 11.1
RATS 11.1

Procedures /

EGTEST Procedure

Home Page

← Previous Next →

@EGTEST performs an Engle-Granger residual-based cointegration test. It uses @EGTESTRESIDS for the actual test on the residuals—it runs the preliminary regression and passes the residuals and options on to @EGTESTRESIDS for the final calculations.

 

@EGTEST( options )  start end

# list of endogenous variables(the first variable listed is used as the dependent variable)

Wizards

This is included as one of the tests in the Time Series>Cointegration Test Wizard.

Parameters

start, end

range for first stage regression. By default, the maximum range permitted by the variables.

Options for Selecting Lags

LAGS=number of additional lags [0]

MAXLAGS=maximum number of additional lags to consider [number of observations^.25]

You can use either of these to select either the (maximum) number of additional lags. If you don't use either option, the LAGS default of 0 will be used for METHOD=INPUT and the MAXLAGS default will be used for the others.
 

METHOD=[INPUT]/AIC/BIC/HQ/TTEST/GTOS

METHOD=INPUT uses the input number of LAGS only. METHOD=AIC/BIC/HQ tests the D-F regressions for everything from 0 to LAGS/MAXLAGS and chooses the minimizer for the chosen criterion. METHOD=TTEST/GTOS starts with the full set of lags and deletes lags as long as the final one has a marginal significance level less than the cutoff given by the SIGNIF option. (GTOS is short for General-TO-Specific).
 

SIGNIF=cutoff significance level for METHOD=TTEST or GTOS[.10]

Other Options

DET=NONE/[CONSTANT]/TREND

Choose what deterministic components are included in the regression. This changes the critical values.
 

[PRINT]/NOPRINT

TITLE=Title for output ["Engle-Granger Cointegration Test"]

Variables Defined

%NOBS

number of regression observations + 1 (tables are based upon this) (INTEGER)

%CDSTAT

test statistic (REAL)

%NVAR

number of variables (INTEGER)

%%AUTOP

number of lags used  (INTEGER)

Example

This tests two series for unit roots (a necessary first step), then does an Engle-Granger test with fixed lags=1.

 

@dfunit(det=trend,lags=1) gfr

@dfunit(det=trend,lags=1) pe

*

@egtest(det=trend,lags=1)

# gfr pe

Sample Output

This shows the unit root test for the two series (unit roots are accepted in both cases) and the Engle-Granger test. The null of no cointegration is accepted, so we conclude that the series are not cointegrated.

 

Dickey-Fuller Unit Root Test, Series GFR

Regression Run From 1915:01 to 1984:01

Observations         71

With intercept and trend

Using fixed lags 1

 

Sig Level    Crit Value

1%(**)         -4.09086

5%(*)          -3.47302

10%            -3.16346

 

T-Statistic    -1.47407


 

Dickey-Fuller Unit Root Test, Series PE

Regression Run From 1915:01 to 1984:01

Observations         71

With intercept and trend

Using fixed lags 1

 

Sig Level    Crit Value

1%(**)         -4.09086

5%(*)          -3.47302

10%            -3.16346

 

T-Statistic    -1.47126


 

Engle-Granger Cointegration Test

Null is no cointegration (residual has unit root)

Regression Run From 1915:01 to 1984:01

Observations         71

Using fixed lags 1

Constant and linear trend in cointegrating vector

Critical Values from MacKinnon for 2 Variables

 

Test Statistic -2.43754

1%(**)         -4.55210

5%(*)          -3.91658

10%            -3.59815


 


Copyright © 2026 Thomas A. Doan