I have been using the following code (two shocks) you kindly helped me.
In addition to impulse responses and variance decomposition, would it be possible to directly acquire the followings from this code?
1. The baseline series (in order to see the prediction errors (the deviation between the baseline and the actual series))
2. The contribution of each shock in explaining the deviation between the baseline and the actual series. That is, series of the baseline with the first shock and series of the baseline with the second shock.
Thank you very much for your help and kindness.
Tim
- Code: Select all
OPEN DATA uhligdata.xls
CALENDAR 1965 1 12
compute missc=1.0e+32
data(format=xlS,org=columns) 1965:1 2003:12 gdpc1 gdpdef cprindex totresns bognonbr fedfunds
set gdpc1 = log(gdpc1)*100.0
set gdpdef = log(gdpdef)*100.0
set cprindex = log(cprindex)*100.0
set totresns = log(totresns)*100.0
set bognonbr = log(bognonbr)*100.0
*
system(model=varmodel)
variables gdpc1 gdpdef cprindex fedfunds bognonbr totresns
lags 1 to 6
deterministic constant
end(system)
estimate(noprint,resid=resids)
dec vect[strings] vl(6)
compute vl=||'Consumer Prices','Real GDP','Interest Rates',$
'Market Index Real Stock Prices','Financial Sector Index Real Stock Prices','Real Exchange Rates'||
compute n1=1000
compute n2=1000
compute nvar=6
compute nstep=60
compute KMAX=5
* This is the standard setup for MC integration of an OLS VAR
*
dec symm s(6,6)
dec vect v1(6) ;* For the unit vector on the 1st draw
dec vect v2(5) ;* For the unit vector on the 2nd draw
dec vect v(6) ;* Working impulse vector
compute sxx =%decomp(%xx)
compute svt =%decomp(inv(%nobs*%sigma))
compute betaols=%modelgetcoeffs(varmodel)
compute ncoef =%rows(sxx)
compute wishdof=%nobs-ncoef
dec rect ranc(ncoef,nvar)
*
* Most draws are going to get rejected. We allow for up to 1000
* good ones. The variable accept will count the number of accepted
* draws. GOODRESP will be a RECT(nsteps,nvar) at each accepted
* draw.
*
declare vect[rect] goodresp(1000) goodfevd(1000)
declare vect[rect] goodrespa(1000) goodfevda(1000)
declare vector ik a(nvar) ones(nvar)
declare series[rect] irfsquared
compute ones=%const(1.0)
source forcedfactor.src
*
compute accept=0
infobox(action=define,progress,lower=1,upper=n1) 'Monte Carlo Integration'
do draws=1,n1
*
* Make a draw from the posterior for the VAR and compute its impulse
* responses.
*
compute sigmad =%ranwisharti(svt,wishdof)
compute p =%decomp(sigmad)
compute ranc =%ran(1.0)
compute betau =sxx*ranc*tr(p)
compute betadraw=betaols+betau
compute %modelsetcoeffs(varmodel,betadraw)
*
* This is changed to unit shocks rather than orthogonalized shocks.
*
impulse(noprint,model=varmodel,decomp=p,results=impulses,steps=nstep)
gset irfsquared 1 1 = %xt(impulses,t).^2
gset irfsquared 2 nstep = irfsquared{1}+%xt(impulses,t).^2
*
* Do the subdraws over the unit sphere. These give the weights on the
* orthogonal components.
*
do subdraws=1,n2
************************************************
* First Set of Restrictions - Unique Impulse Vector
************************************************
compute v1=%ransphere(6)
compute i1=p*v1
do k=1,KMAX+1
compute ik=%xt(impulses,k)*v1
if ik(1)>0.or.ik(2)>0.or.ik(3)<0.or.ik(6)>0
branch 105
end do k
*
* Meets the first restriction
* Draw from the orthogonal complement of i1 (last five columns of the
* factor "f").
*
@forcedfactor(force=column) sigmad i1 f
compute v2=%ransphere(5)
compute i2=%xsubmat(f,1,6,2,6)*v2
compute v2=inv(p)*i2
*****************************************************
* Second Set of Restrictions - Demand Shock
*****************************************************
do k=1,KMAX+1
compute ik=%xt(impulses,k)*v2
if ik(1)<0.or.ik(2)<0.or.ik(3)<0.or.ik(6)<0
branch 105
end do k
*
* Meets both restrictions
*
compute accept=accept+1
dim goodrespa(accept)(nstep,nvar) goodfevda(accept)(nstep,nvar)
dim goodresp(accept)(nstep,nvar) goodfevd(accept)(nstep,nvar)
ewise goodresp(accept)(i,j)=(ik=%xt(impulses,i)*v1),ik(j)
ewise goodfevd(accept)(i,j)=(ik=(irfsquared(i)*(v1.^2))./(irfsquared(i)*ones)),ik(j)
ewise goodrespa(accept)(i,j)=(ik=%xt(impulses,i)*v2),ik(j)
ewise goodfevda(accept)(i,j)=(ik=(irfsquared(i)*(v2.^2))./(irfsquared(i)*ones)),ik(j)
if accept>=1000
break
:105
end do subdraws
if accept>=1000
break
infobox(current=draws)
end do draws
infobox(action=remove)
*
* Post-processing. Graph the mean of the responses along with the 16% and 84%-iles
*
clear upper lower resp
*
spgraph(vfields=6,hfields=2,subhea='Monetary Policy Shocks and Exchange Rate Shocks, Thailand')
do i=1,nvar
compute minlower=maxupper=0.0
smpl 1 accept
do k=1,nstep
set work = goodresp(t)(k,i)
compute frac=%fractiles(work,||.16,.84||)
compute lower(k)=frac(1)
compute upper(k)=frac(2)
compute resp(k)=%avg(work)
end do k
*
smpl 1 nstep
graph(pattern,ticks,number=0,picture='##.##',header=+vl(i)) 3
# resp
# upper / 2
# lower / 2
end do i
*
do i=1,nvar
compute minlower=maxupper=0.0
smpl 1 accept
do k=1,nstep
set work = goodrespa(t)(k,i)
compute frac=%fractiles(work,||.16,.84||)
compute lower(k)=frac(1)
compute upper(k)=frac(2)
compute resp(k)=%avg(work)
end do k
*
smpl 1 nstep
graph(pattern,ticks,number=0,picture='##.##',header=+vl(i)) 3
# resp
# upper / 2
# lower / 2
end do i
*
spgraph(done)
smpl
*
clear upper lower resp
*
spgraph(vfields=3,hfields=2,hlabel='Fraction of Variance Explained with Pure-Sign Approach',subhea='Subhea')
do i=1,nvar
compute minlower=maxupper=0.0
smpl 1 accept
do k=1,nstep
set work = goodfevd(t)(k,i)
compute frac=%fractiles(work,||.16,.50,.84||)
compute lower(k)=frac(1)
compute upper(k)=frac(3)
compute resp(k)=frac(2)
display resp(k)
end do k
*
smpl 1 nstep
graph(pattern,ticks,number=0,min=0.0,picture="##.##",header="Fraction Explained for "+vl(i)) 3
# resp
# upper / 2
# lower / 2
end do i
*
spgraph(done)
smpl
*
clear upper lower resp
*
spgraph(vfields=3,hfields=2,hlabel='SECOND Fraction of Variance Explained with Pure-Sign Approach',subhea='Subhea')
do i=1,nvar
compute minlower=maxupper=0.0
smpl 1 accept
do k=1,nstep
set work = goodfevda(t)(k,i)
compute frac=%fractiles(work,||.16,.50,.84||)
compute lower(k)=frac(1)
compute upper(k)=frac(3)
compute resp(k)=frac(2)
display resp(k)
end do k
*
smpl 1 nstep
graph(pattern,ticks,number=0,min=0.0,picture="##.##",header="Fraction Explained for "+vl(i)) 3
# resp
# upper / 2
# lower / 2
end do i
*
spgraph(done)
smpl
