Hi, I'm running a GJR(1,1)-MA(1)-m with returns distributed as a student's t.
It works fine on the whole sample, but if I try to run it on subsamples it gives this (same result if I impose the sample with "sample start end" or directly inside the garch):
GARCH Model - Estimation by BFGS
Convergence in 1 Iterations. Final criterion was +NAN <= 0.0000100
Daily(5) Data From 1990:02:16 To 2000:02:18
Usable Observations 2610
Total Observations 2611 Skipped/Missing 1
Log Likelihood NA
Variable Coeff Std Error T-Stat Signif
*******************************************************************************
1. Constant -NAN 0.000000 0.00000 0.00000000
2. GARCH-V -NAN 0.000000 0.00000 0.00000000
3. Mvg Avge{1} -NAN 0.000000 0.00000 0.00000000
4. C -NAN 0.000000 0.00000 0.00000000
5. A -NAN 0.000000 0.00000 0.00000000
6. B -NAN 0.000000 0.00000 0.00000000
7. D -NAN 0.000000 0.00000 0.00000000
8. Shape -NAN 0.000000 0.00000 0.00000000
I did the arch test on the whole sample and on the subsample, they say there are arch effects in both case.
My variable is rend (daily return on the FTSE100 index); the model is this one:
garch(p=1,q=1, resids=e, asymmetric, distrib=t, method=bfgs, regressors, hseries=h) / rend
# constant %garchv %mvgavge{1}
what's wrong in that?
thanks!
