Hello,
How can I estimate a multivariate GARCH in the mean model within the GARCH Wizard?

CALENDAR(M) 1973:11
OPEN DATA "C:\Users\User\Desktop\110722 Energy RATS\dataus.txt"
DATA(FORMAT=PRN,NOLABELS,ORG=COLUMNS,TOP=2,RIGHT=3) 1973:11 2007:10 DATES OIL IPI
/* PRE-ESTIMATION */
dec symm[series] hhs(2,2)
clear(zeros) hhs
equation oileq oil
# constant hhs(1,1) hhs(1,2)
equation ipieq ipi
# constant hhs(2,1) hhs(2,2)
group garchm oileq ipieq
garch(model=garchm,p=1,q=1,pmethod=simplex,piters=10,$
mvhseries=hhs)
/* ESTIMATION OF THE M-GARCH-M */
GARCH(P=1,Q=1,MV=BEKK,REGRESSORS) / OIL IPI
# Constant OIL IPI HHS(1,1) HHS(2,1) HHS(2,2)MV-GARCH, BEKK - Estimation by BFGS
Convergence in 159 Iterations. Final criterion was 0.0000000 <= 0.0000100
Monthly Data From 1973:11 To 2007:10
Usable Observations 408
Log Likelihood 2090.6861
Variable Coeff Std Error T-Stat Signif
***************************************************************************************************************************************************
1. Constant -4.0560e-003 7.6905e-004 -5.27400 0.00000013
2. OIL -0.6627 0.0960 -6.90462 0.00000000
3. IPI 0.0000 0.0000 0.00000 0.00000000
4. HHS(1,1) 0.0000 0.0000 0.00000 0.00000000
5. HHS(2,1) 0.0000 0.0000 0.00000 0.00000000
6. HHS(2,2) 0.0000 0.0000 0.00000 0.00000000
7. ¾OYÃ\݇?øzøÂÚf»>nŸ)ÝHL¿Ã„Ô¤ô²¼?Ðõá0¼>{Õ¾të±?8ÄhL®~¿àÊNŸŠ
U¾Ð¼—šµÔe¾d ÂgÇ|B¾ç‘Àtš—5¿~` -4.9031e+238 0.0000 0.00000 0.00000000
8. Ðõá0¼>{Õ¾të±?8ÄhL®~¿àÊNŸŠ
U¾Ð¼—šµÔe¾d ÂgÇ|B¾ç‘Àtš—5¿~` 4203.2627 0.0000 0.00000 0.00000000
9. ¼—šµÔe¾d ÂgÇ|B¾ç‘Àtš—5¿~` 0.0000 0.0000 0.00000 0.00000000
10. ó–qýì>ð`nŽ}k=?§"=N÷ªì?åv>ÔÖ⾊·øbn¼?]˜9,ÞÔ?>y*è…¦¾o•¤að„¾ê"£|P‡>&}ð(Í?5¿ˆÍžjc 36793.2891 0.0000 0.00000 0.00000000
11. øbn¼?]˜9,ÞÔ?>y*è…¦¾o•¤að„¾ê"£|P‡>&}ð(Í?5¿ˆÍžjc 1.1731e+021 0.0000 0.00000 0.00000000
12. P‡>&}ð(Í?5¿ˆÍžjc -2.5677e+045 0.0000 0.00000 0.00000000
13. C(1,1) -7.2427e-003 1.7902e-003 -4.04579 0.00005215
14. C(2,1) -8.8975e-005 1.6438e-003 -0.05413 0.95683315
15. C(2,2) 2.8661e-006 4.9067e-003 5.84128e-004 0.99953393
16. A(1,1) -0.8041 0.1463 -5.49438 0.00000004
17. A(1,2) -0.2136 0.1126 -1.89697 0.05783225
18. A(2,1) 0.2031 0.2289 0.88734 0.37489799
19. A(2,2) -0.3593 0.1668 -2.15351 0.03127829
20. B(1,1) 1.2237 0.2725 4.49011 0.00000712
21. B(1,2) 1.1514 0.1842 6.25248 0.00000000
22. B(2,1) -0.6243 0.4439 -1.40662 0.15953878
23. B(2,2) -0.9113 0.2513 -3.62565 0.00028824PERRY wrote:Running the above program I get the following output:
- Code: Select all
MV-GARCH, BEKK - Estimation by BFGS
Convergence in 159 Iterations. Final criterion was 0.0000000 <= 0.0000100
Monthly Data From 1973:11 To 2007:10
Usable Observations 408
Log Likelihood 2090.6861
Variable Coeff Std Error T-Stat Signif
***************************************************************************************************************************************************
1. Constant -4.0560e-003 7.6905e-004 -5.27400 0.00000013
2. OIL -0.6627 0.0960 -6.90462 0.00000000
3. IPI 0.0000 0.0000 0.00000 0.00000000
4. HHS(1,1) 0.0000 0.0000 0.00000 0.00000000
5. HHS(2,1) 0.0000 0.0000 0.00000 0.00000000
6. HHS(2,2) 0.0000 0.0000 0.00000 0.00000000
7. ¾OYÃ\݇?øzøÂÚf»>nŸ)ÝHL¿Ã„Ô¤ô²¼?Ðõá0¼>{Õ¾të±?8ÄhL®~¿àÊNŸŠ
U¾Ð¼—šµÔe¾d ÂgÇ|B¾ç‘Àtš—5¿~` -4.9031e+238 0.0000 0.00000 0.00000000
8. Ðõá0¼>{Õ¾të±?8ÄhL®~¿àÊNŸŠ
U¾Ð¼—šµÔe¾d ÂgÇ|B¾ç‘Àtš—5¿~` 4203.2627 0.0000 0.00000 0.00000000
9. ¼—šµÔe¾d ÂgÇ|B¾ç‘Àtš—5¿~` 0.0000 0.0000 0.00000 0.00000000
10. ó–qýì>ð`nŽ}k=?§"=N÷ªì?åv>ÔÖ⾊·øbn¼?]˜9,ÞÔ?>y*è…¦¾o•¤að„¾ê"£|P‡>&}ð(Í?5¿ˆÍžjc 36793.2891 0.0000 0.00000 0.00000000
11. øbn¼?]˜9,ÞÔ?>y*è…¦¾o•¤að„¾ê"£|P‡>&}ð(Í?5¿ˆÍžjc 1.1731e+021 0.0000 0.00000 0.00000000
12. P‡>&}ð(Í?5¿ˆÍžjc -2.5677e+045 0.0000 0.00000 0.00000000
13. C(1,1) -7.2427e-003 1.7902e-003 -4.04579 0.00005215
14. C(2,1) -8.8975e-005 1.6438e-003 -0.05413 0.95683315
15. C(2,2) 2.8661e-006 4.9067e-003 5.84128e-004 0.99953393
16. A(1,1) -0.8041 0.1463 -5.49438 0.00000004
17. A(1,2) -0.2136 0.1126 -1.89697 0.05783225
18. A(2,1) 0.2031 0.2289 0.88734 0.37489799
19. A(2,2) -0.3593 0.1668 -2.15351 0.03127829
20. B(1,1) 1.2237 0.2725 4.49011 0.00000712
21. B(1,2) 1.1514 0.1842 6.25248 0.00000000
22. B(2,1) -0.6243 0.4439 -1.40662 0.15953878
23. B(2,2) -0.9113 0.2513 -3.62565 0.00028824
TomDoan wrote:The first of the two looks correct. Generally, you
only include the "own" covariances in the mean model. The second one
clearly is incorrect, because you're including current OIL in the
equations---perhaps you mean OIL{1} which would put the lagged value
in.
CALENDAR(M) 1973:11
OPEN DATA "C:\Users\User\Desktop\110722 Energy RATS\dataus.txt"
DATA(FORMAT=PRN,NOLABELS,ORG=COLUMNS,TOP=2,RIGHT=3) 1973:11 2007:10
DATES OIL IPIdec symm[series] hhs(2,2)
clear(zeros) hhsequation oileq oil
# constant hhs(1,1) hhs(1,2) hhs(2,1) hhs(2,2)
equation ipieq ipi
# constant hhs(1,1) hhs(1,2) hhs(2,1) hhs(2,2)group garchm oileq ipieqgarch(model=garchm,p=1,q=1,mv=BEKK,pmethod=simplex,piters=10,$
mvhseries=hhs)mvhseries=hhsPERRY wrote:Is the following the part where RATS stores the conditional variances/covariances in the hss matrix?
- Code: Select all
mvhseries=hhs
CALENDAR(M) 1973:11
OPEN DATA "C:\Users\User\Desktop\110722 Energy RATS\dataus.txt"
DATA(FORMAT=PRN,NOLABELS,ORG=COLUMNS,TOP=2,RIGHT=3) 1973:11 2007:10 DATES OIL IPI
/* PRE-ESTIMATION */
dec symm[series] hhs(2,2)
clear(zeros) hhs
equation oileq oil
# constant hhs(1,1) hhs(1,2) hhs(2,1) hhs(2,2)
equation ipieq ipi
# constant hhs(1,1) hhs(1,2) hhs(2,1) hhs(2,2)
group garchm oileq ipieq
garch(model=garchm,p=1,q=1,mv=BEKK,pmethod=simplex,piters=10,$
mvhseries=hhs)
MV-GARCH, BEKK - Estimation by BFGS
Convergence in 49 Iterations. Final criterion was 0.0000045 <= 0.0000100
Monthly Data From 1973:11 To 2007:10
Usable Observations 408
Log Likelihood 2106.4402
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. Constant 0.0030665 0.0063040 0.48644 0.62665755
2. HHS(1,1) 2.7241851 1.2881911 2.11474 0.03445239
3. HHS(2,1) -58.0674533 21.4759674 -2.70383 0.00685445
4. HHS(2,1) -57.7541027 21.4759760 -2.68924 0.00716144
5. HHS(2,2) -160.8529558 95.2018502 -1.68960 0.09110469
6. Constant 0.0043623 0.0013002 3.35503 0.00079358
7. HHS(1,1) -0.0427378 0.0812831 -0.52579 0.59903456
8. HHS(2,1) -1.9714207 1.7100354 -1.15285 0.24897043
9. HHS(2,1) -1.9022851 1.7100860 -1.11239 0.26596986
10. HHS(2,2) -20.9218211 20.8896361 -1.00154 0.31656546
11. C(1,1) 0.0079456 0.0014138 5.61989 0.00000002
12. C(2,1) 0.0000917 0.0012644 0.07249 0.94221068
13. C(2,2) 0.0028532 0.0013020 2.19145 0.02841922
14. A(1,1) 0.6897016 0.0710530 9.70686 0.00000000
15. A(1,2) 0.0157191 0.0068716 2.28756 0.02216303
16. A(2,1) -0.0791518 0.3584136 -0.22084 0.82521761
17. A(2,2) 0.4041140 0.1105482 3.65555 0.00025663
18. B(1,1) 0.8050431 0.0306167 26.29421 0.00000000
19. B(1,2) -0.0058133 0.0051301 -1.13319 0.25713322
20. B(2,1) -0.1306640 0.3039599 -0.42987 0.66728833
21. B(2,2) 0.7970205 0.1404967 5.67288 0.00000001
Return to ARCH and GARCH Models
Users browsing this forum: No registered users and 1 guest