Chapter 7: Non-Linear Estimation

7.13 Troubleshooting

If all the functions which you were trying to maximize were globally concave and
were computable over the entire parameter space, there would be little need for this
section. Unfortunately, that’s not the real world, and if you do any significant amount
of work with non-linear optimization, you will run into occasional problems. Make
sure that you understand the effects of numerical precision and initial guess values
described in 7.1. Of course, almost all problems are due to “bad” initial guess values,
in the sense that if you could start out at the optimum, everything would be simple.
And many problems can be solved by coming up with better settings for these.

If you haven’t tried using preliminary simplex iterations (section 7.3) before using
BFGS or BHHH, we would suggest that you start with that. If you have, and you still
are having problems, read further.

“Missing Values And/Or SMPL Options Leave No Usable Data Points”

RATS will produce this message if it can’t find any data points at which it can com-
pute an objective function. In some cases, there is a simple fix. For instance, if you
are maximizing a function which includes a term of log (sigsq) and you haven't
given sigsq an initial guess value, the standard initialization value of zero will leave
the function uncomputable. If you did this, you should see a warning like

NL6. NONLIN Parameter SIGSQ Has Not Been Initialized. Trying O

These warnings usually are of little consequence, since zero is, for many parameters,
a quite reasonable initial guess value. If, however, you're having missing value
problems, be careful about this.

The other common source for this problem is a failure to set up a recursively defined
function properly. If you have an ARCH/GARCH model or one with moving average
errors, you need to give a hard value for the start parameter since the recursion has
to have a known initial point. See the “Recursive FRML’s” part of Section 7.6 if you
need more help.

“Subiterations Limit Exceeded”

This message is issued when the subiteration process described in Section 7.2 fails to
produce a step size which meets the criteria described there. This indicates a very
serious problem—the predicted rate of change of the function in the chosen direction
is quite wrong. If this occurs on a very early iteration, it’s possible that it can be fixed
by increasing the subiterations limit from its standard value of 30. However, you're
more likely to have success in a situation like this by doing some preliminary simplex
iterations (PMETHOD=SIMPLEX, PITERS=5 for instance) to improve the initial guess
values.

If it occurs later in the iteration process, it is usually the result of one of two problems:

1. Estimates at or near the boundary of the computable zone

2. Collapse to near-singularity of the Hessian

RATS User’s Guide 287

Chapter 7: Non-Linear Estimation

If you have a function value which can’t be computed over some region (a variance
goes negative, a covariance matrix becomes singular, a probability exceeds 1) and the
estimates have moved close to that region, it may be hard for general hill-climbing
methods to work because the function value may be going from computable to
uncomputable over a short distance. If this is what has happened (check the coeffi-
cient values on the TRACE output), you might be able to push the estimates away by
restarting the estimation with simplex iterations. If it still doesn’t move, you've
probably found at least a local maximum at the boundary. You’ll need to try the
entire process from a different set of initial guess values to see if there is a higher
global optimum away from the boundary.

The collapse to near-singularity of the Hessian is the more likely culprit if you're
using METHOD=BFGS. The instruction DISPLAY %CVTOCORR (%XX) (which displays
the last inverse Hessian as a correlation matrix) will likely show you some off-
diagonal values very near 1.0 (such as .9999). In some cases, you may be able to fix
this by just re-executing the instruction, which will reinitialize the BFGS process. If,
however, you have some parameters which are very highly correlated, this will
probably quite quickly reproduce the problem. If that’s the case, you may need to find
a different (equivalent) parameterization. Concentrating out a parameter or param-
eters, can, where Eossible, help out quite a bit. And substitutions like bx? = b" (x/ X,)p
and a +o¢x,_, = a (1-¢)+ex,_,, generally produce better behavior in the parameter
pairs involved.

Slow Convergence (Many Iterations)

The more parameters that you try to estimate, the more iterations you're likely to
need. If you have a function which seems to be making very slow progress, check the
TRACE output, paying particular attention to the distance scale on the subiterations:

Subiterations 2. Distance scale 0.500000000

If you're consistently seeing distance scales of 1.0 or 0.5, you may just need to be
patient. Numbers like those mean that the predictions for the behavior of the func-
tion value seem to be accurate. If, on the other hand, you're seeing short steps like

Subiterations 5. Distance scale 0.062500000

you may need to rethink the parameterization of the model as described above.

You can sometimes improve the behavior of the estimates by doing small sets of
iterations on subsets of the parameters. Something like

maximize (iters=20,parmset=psetl,noprint) maxfrml
maximize (iters=20,parmset=pset2,noprint) maxfrml
maximize (parmset=psetl+pset2) maxfrml

The first MAXIMIZE will do 20 iterations of the parameters in PSET1 given the initial
guess values in PSET2. The second will do 20 iterations on PSET2 given the refined

288 RATS User’s Guide

Chapter 7: Non-Linear Estimation

values of PSET1. Then the final MAXIMIZE will estimate the full set. Because the
subiterations apply the same step size multiple to the entire parameter set, the
overall process may be slowed down by a few poorly estimated parameters.

Slow Convergence (Time)

If each iteration takes a long time, there are two possible reasons: the function
evaluations themselves are slow, or there are a large number of parameters. You
could, of course, be dealing with both. If you need to speed up your function evalua-
tions, look for situations where you do redundant calculations.

« If your FRML or FUNCTION includes a calculation which doesn’t depend upon
the parameters, do it once and save the results.

+ If you have a calculation which doesn't depend upon time, but does depend
upon the parameters, use the START option on the estimation instruction and
compute it in that.

* Within a FRML, avoid making multiple references to the same sub-FRML. For
instance, if RESIDA is a FRML, the following are equivalent, but the second
computes RESIDA just once:

frml frontier = log(theta) - .5*resida**2 + §
log (%cdf (-lambda*resida))
frml frontier = alpha=resida, $
log(theta) - .5*alpha**2 + log(%$cdf (-lambda*alpha))

If the size of the parameter set is what is slowing things down, you might want to
think about the suggestion above for using subsets of the parameters. This will give
you the biggest improvement in speed if you can optimize over a less complicated
formula for different subsets.

Zero Standard Errors

If the model seems to converge reasonably, but your output shows that some coeffi-
cients have (true) zero standard errors, this will almost always be because that
coefficient doesn’t actually affect the function value. Most commonly, this is just a
simple error of including a coefficient doesn’t appear in the formula(s) being esti-
mated. More subtly, it can be a parameter which multiplies a series or subcalculation
which takes a zero value.

RATS User’s Guide 289

